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Abstract—In this paper, we study the impacts of non-Personal Identifiable Information (non-PII) on the privacy of graph data with
attribute information (e.g., social networks data with users’ profiles (attributes)), namely Structure-Attribute Graph (SAG) data, both
theoretically and empirically. Our main contributions are two-fold: (i) we conduct the first attribute-based anonymity analysis for SAG
data under both preliminary and general models. By careful quantification, we obtain the explicit correlation between the graph
anonymity and the attribute information. We also validate our analysis through numerical and real world data-based evaluations and
the results indicate that the non-PII can also lead to significant anonymity loss; and (ii) according to our theoretical analysis, we
propose a new de-anonymization framework for SAG data, namely De-SAG, which takes into account both the graph structure and the
attribute information to the best of our knowledge. By extensive experiments, we demonstrate that De-SAG can significantly improve
the performance of state-of-the-art graph de-anonymization attacks. Our attribute-based anonymity analysis and de-anonymization
framework are expected to provide data owners and researchers a more complete understanding on the privacy vulnerability of graph
data, and thus shed light on future graph anonymization and de-anonymization research.

Index Terms—Anonymity analysis; de-anonymization; Structure-Attribute Graph (SAG) data; evaluation
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1 INTRODUCTION

Different from traditional tabular/relational data, many da-
ta generated by modern computer systems are graph data
consisting of nodes and links [1][2][3][4][5]. Normally, the
nodes in the graphs represent users (or devices operated by
users) and the links represent the relationships among users.
In practice, typical graph data includes social networks
data [1][2], communication data [4][21], network topology
data [4][21], mobility traces [3][7], etc. For example, when
modeling social networks data (e.g., Facebook [37], Twit-
ter [38], and Google Plus (GP) [39]) as graphs, the nodes
represent users and the links represent social relationships
among users (e.g., friendships, follow relationships, and
circle relationships).

As with traditional tabular/relational data, graph data
are also very useful for many applications, e.g., academic re-
search, data mining tasks, advertisements, commercial deci-
sion support, fraud/terrorist detection, the study of disease
diffusion, and thus they are frequently shared/published
to researchers, commercial parters, and/or even the pub-
lic [2]-[7], [19]-[21]. On the other hand, graph data also
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carry a lot of sensitive private information of users who
generate them (e.g., birthdate, salary, sexual orientation,
political preference), which might be learned by adversaries.
Therefore, graph data are usually anonymized before being
shared/published [22][29][31].

However, as shown both theoretically and empirically
[2], [4], [17], the anonymized graph data may still be sus-
ceptible to structure-based de-anonymization attacks, which de-
anonymize an anonymized graph leveraging the structural
(topological) similarity between the anonymized graph and
an auxiliary graph. In [1], [2], [3], [6], [7], [15], [16], several
two-phase seed-based de-anonymization attacks are proposed. In
the first phase of the attack, seed mappings are identified
from the anonymized graph to the auxiliary graph. Then,
in the second phase, the de-anonymization is propagated
to other anonymized users from the seed users leveraging
various de-anonymization techniques. In [4], a seed-free (or
blind) de-anonymization scheme is proposed, under which
the de-anonymization is conducted via minimizing an error
function defined on the structural difference between the
anonymized graph and the auxiliary graph. In addition to
the graph structure-based de-anonymization attacks, recent-
ly, the study of understanding and quantifying the structure-
based de-anonymizability of graph data has also drawn a lot
of attention [4][14][15][16][17].

In most real scenarios of sharing/publishing graph data,
in addition to sharing/publishing the graph structure, a lot
of non-Personal Identifiable Information (non-PII), or attribute
information, associated with graph users is also shared or
published, e.g., gender, education, city, country, interests
[19]-[21]. Therefore, when studying anonymization and de-
anonymization techniques for graph data, the following
question can be posed: what are the impacts of the attribute
information on the anonymity/de-anonymizability of graph data?
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However, in existing graph data de-anonymization research
[1]-[7][15][16], only graph structure information is consid-
ered. Similarly, existing graph anonymity quantification re-
search [4][14][15][16][17] only considers the graph structure,
which gives an incomplete picture of the actual privacy
vulnerability of graph data. To address the aforementioned
open problem, we study the impact of attribute information
(non-PII) on the privacy of graph data both theoretically
and empirically. In this paper, to distinguish between graph
data with just graph structure and graph data with structure
and attributes, we name the graph data with structure and
attribute information Structure-Attribute Graph (SAG) data.
Our main contributions can be summarized as follows.

1) We conduct the first attribute-based anonymity analy-
sis of SAG data under both preliminary and general
data models. By careful quantification, we explicitly
demonstrate the correlation between the achievable
graph anonymity and the attribute information. Our
theoretical results demonstrate that the attribute
information, even as non-PII, can also lead to signif-
icant anonymity loss of graph data. We also validate
our analysis by both numerical evaluation and real
world SAG data-based evaluation. The evaluation
results further confirm our anonymity analysis. Our
attribute-based anonymity analysis together with
existing structure-based de-anonymizability quan-
tifications provide data owners and researchers a
more complete understanding of the privacy of
graph data.

2) According to our attribute-based anonymity anal-
ysis, we propose a new de-anonymization attack
on graph data, namely De-SAG, which takes into
account both graph structure and attribute informa-
tion to the best of our knowledge. Through exten-
sive evaluations leveraging real world SAG data, we
demonstrate that De-SAG can significantly enhance
existing structure-based de-anonymization attack-
s. For instance, when de-anonymizing a Facebook
dataset (4,039 users, 88,234 user-user links, 1,283
attributes, 37,257 user-attribute links), De-SAG has
a 3.82 ∼ 10.1 times better de-anonymization per-
formance than state-of-the-art structure-based de-
anonymization attacks [4][16].

Roadmap. In the rest of this paper, we discuss related
work in Section 2. In Section 3, we provide the data model,
preliminaries, and definitions. The attribute-based anonymi-
ty analysis and evaluation are conducted in Section 4. Then,
we propose and evaluate De-SAG in Section 5. The paper is
concluded in Section 6 along with future work discussion.

2 RELATED WORK

In this section, we summarize the related work and discuss
the novelties of this paper.

2.1 De-anonymization Attacks
Structure-based de-anonymization was first introduced by
Backstrom et al. in [1], where they proposed both active
and passive attacks. The primary idea of their attacks is
to crate a subgraph and a connection pattern from the

subgraph to the target users before the data is released.
Then, after the data is released, the target users are de-
anonymized by identifying the previously created subgraph
and the connection pattern. However, the attacks in [1] are
not scalable or tolerable to a change in graph topology
during the data release process, i.e., it is not robust and
thus can be easily defend against by obfuscating the graph
structure. In [2], Narayanan and Shmatikov proposed a
scalable and robust de-anonymization attack to graph data.
That attack consists of two phases. In the first phase, a
set of seed mappings from the anonymized graph to the
auxiliary graph is identified. In the second phase, the de-
anonymization is propagated from the seed mappings to
the other nodes (users) in the anonymized graph leveraging
several de-anonymization heuristics, e.g., eccentricity, node
degrees, revisiting nodes, and reverse match.

In [3], Srivatsa and Hicks extended the structure-
based de-anonymization technique to de-anonymize mobili-
ty traces. To achieve this, a contact graph is first constructed
based on a mobility trace. Subsequently, a social graph is
employed to de-anonymize the target contact graph. To
perform the de-anonymization, three two-phase schemes
are proposed. Similar to the attack in [2], the first phase of
the three attacks is for seed identification. The second phase
of the three attacks is based on three de-anonymization
heuristics, namely Distance Vector (DV), Randomized S-
panning Trees (RST), and Recursive Sub-graph Matching
(RSM), respectively. In [4][5], Ji et al. proposed an iteration-
based seed-free de-anonymization attack. During each de-
anonymization iteration, two candidate sets of users V1 and
V2 are selected from the anonymized and auxiliary graphs,
respectively. Then, the users in V1 are de-anonymized to the
users in V2 by minimizing an error function, which indicates
the edge difference caused by a mapping scheme.

In [6], Nilizadeh et al. proposed a community-based
de-anonymization technique for graph data, which can be
used to enhance existing seed-based attacks. In this tech-
nique, a community-level de-anonymization is first per-
formed. Subsequently, within each de-anonymized commu-
nity, the user-level de-anonymization is conducted using
existing attacks, e.g., [2]. In [7][8], Ji et al. designed a two-
phase de-anonymization framework by considering more
de-anonymization metrics, e.g., structural similarity, relative
distance similarity, and inheritance similarity. They also
addressed the scenario where the anonymized graph and
the auxiliary graph have partial overlap.

Yartseva and Grossglauser proposed another two-phase
de-anonymization attack in [15]. In the first phase of the
attack, a set of seed mappings is identified. Then, in the
second phase, all the (un-de-anonymized) neighbors of the
de-anonymized users (including seed users) are considered
as de-anonymization candidates and the pair of users who
have the largest number of common de-anonymized neigh-
bors are de-anonymized. Another similar two-phase attack
is proposed in [16] by Korula and Lattanzi. After identi-
fying the seeds in the first phase, the de-anonymization is
propagated to the neighbors of the de-anonymized user-
s. The pairs of users with the number of common de-
anonymized neighbors greater than a threshold value will
be de-anonymized. In [13], Chiasserini et al. studied the
graph de-anonymization problem under the scale-free user
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relation model, which is considered to be more realistic.
They again employed a two-phase de-anonymization frame-
work.

In [9], Zhang et al. presented a structure-based de-
anonymization attack to heterogeneous information net-
works, which are defined as graphs carrying heterogeneous
(or multiple) relationships. They showed that how the extra
information derived from heterogeneity can be used to
improve the de-anonymization performance.

In addition to the above structure-based de-
anonymization attacks, Wondracek et al. in [10] introduced
a group membership information based attack to de-
anonymize social network users. To conduct the attack,
users’ group membership information is first obtained
leveraging a browser history stealing attack. Subsequently,
the group membership information is used to distinguish
(de-anonymize) different users. To some extent, the group
membership information can be considered as one kind
of attribute information. However, in addition to the
membership information, other attribute information can
also be utilized to conduct de-anonymization. Furthermore,
structure-based de-anonymization is also powerful as
shown in [1]-[7][15][16].

2.2 Defense
Generally, existing popular graph anonymization tech-
niques can classified into four categories: k-anonymization
based schemes [23][24][25][26], aggregation/class-based
schemes [27][28][12], differential privacy based schemes
[29][30], and random walk based schemes [31][32].

For k-anonymization based schemes, the basic idea is
to make each node indistinguishable with at least k − 1
other nodes with respect to some characteristic function
(e.g., node degree) in the anonymized graph. Following
this idea, Zhou and Pei proposed k-neighborhood [23],
Liu and Terzi proposed k-degree [24], Zou et al. pro-
posed k-automorphism [25], and Cheng et al. proposed k-
isomorphism [26] to defend against structure-based graph
de-anonymization attacks.

Aggregation/class-based anonymization schemes follow
a similar idea as that in k-anonymization, where nodes are
first grouped into classes and by topological operations, all
the nodes within the same class are indistinguishable with
respect to some defined characteristic functions [27][28][12].

Differential privacy was first proposed for statistical
database query with strong privacy guarantee. Recently,
many efforts have been spent to extend differential privacy
to the scenario where data items have correlations, e.g.,
graph data. In [29], Sala et al. proposed a method to share
graphs using differentially private graph models. In [30],
Xiao et al. presented a data sanitization solution that infers
a network’s structure in a differentially private manner.

In [31], Mittal et al. proposed a random walk based
graph anonymization scheme, under which each edge in
the original graph is replaced by an edge generated by a
random walk of length t. Later, this scheme was improved
by Liu et al. in [32]. Instead of generating an edge via a fixed
length random walk, Liu et al. proposed an adaptive ran-
dom walk based graph anonymization method, where the
random walk length is learned based on the local structural
characteristics.

In [35][36], Ji et al. studied both the utility and the
security performance of existing graph anonymization tech-
niques. Through extensive analysis and empirical results,
they demonstrated that existing anonymization techniques
are still vulnerable to modern graph de-anonymization at-
tacks. Furthermore, most existing defense techniques only
focused on anonymizing graph structural information. It
is seldom to see the anonymization scheme that accounts
for both graph structural information and the attribute
information.

2.3 De-anonymizability Analysis

Recently, in addition to studying the de-anonymization
attacks, the issue of quantifying the de-anonymizability
of graph data has also drawn much attention. In [14],
Pedarsani and Grossglauser studied the de-anonymizability
of graph data under the Erdős-Rényi (ER) model G(n, p),
where a graph consists of n users and any two users are con-
nected (i.e., having a link) with probability p. They derived
the structure conditions on the anonymized and auxiliary
graphs to achieve perfect de-anonymization, i.e., successful-
ly de-anonymize all the users in the anonymized graph. In
[15], Yartseva and Grossglauser studied the seed-based de-
anonymizability of graph data under the ER model. They
specified the de-anonymization percolation condition of
graph data (if the anonymized graph is percolated with re-
spect to de-anonymization, the majority of the anonymized
users can be successfully de-anonymized by structure-based
de-anonymization attacks). However, a graph under the ER
model has a Poisson degree distribution [4], which is differ-
ent from most, if not all, of the real world graph data. Hence,
the quantification under the ER model might not be applied
to real world graph data. Similar to [15], Korula and Lattanzi
studied the seed-based de-anonymizability of graph data
under both the ER model and the Preferential Attachement
(PA) model. They also specified the structure conditions
for de-anonymizing a graph. However, the quantification in
[16] is based on a strict assumption of existing dense seeds,
which might be impractical.

In [4], Ji et al. quantified the structure-based de-
anonymizability for graph data under the Configura-
tion Model. They derived the structure conditions on
the anonymized and auxiliary graphs for both perfec-
t de-anonymization and partial de-anonymization (de-
anonymizing a portion of anonymized users). In [6],
Nilizadeh et al. analyzed the impacts of the communi-
ty property on graphs’ anonymity. They experimentally
showed that the community information can be used to
improve existing de-anonymization attacks. In [17][18], Ji et
al. studied the seed-based de-anonymizability of graph data
under both the ER model and a statistical model. Similar to
[4], they specified the structure conditions for both perfect
and partial de-anonymization.

2.4 Attack and Defense on SAG Data

In [11], Qian et al. proposed to de-anonymize social graphs
and infer private attributes leveraging knowledge graphs,
which carry both graph structural information and semantic
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Fig. 1. The SAG model.

information. In [33], Gong et al. adapted several representa-
tive supervised and unsupervised link prediction algorithm-
s to SAG data and demonstrated the performance improve-
ment for each algorithm with respect to both link prediction
and attribute inference. They also evaluated the proposed
algorithms using Google+ datasets. Note that, we have a
different focus than that in [33]. In this paper, we focus on
node (user) privacy (node de-anonymization) instead of link
or attribute privacy (link prediction and attribute inference).
In [34], Jorgensen et al. proposed a method for publishing
SAG data with formal privacy guarantees. They adapted
existing graph models and introduced a new one, and then
showed how to augment them with differential privacy. The
output is a synthetic graph. Again, they focused on link
(relationship) privacy and attribute privacy, while the target
in this paper is to de-anonymize graph users, i.e., we focus
on studying how to break node privacy.

2.5 Remark

In reality, most of the graph data are shared with the
attribution information (non-PII) for data mining tasks or
research purposes [20]. Therefore, it is meaningful to s-
tudy new de-anonymization attacks leveraging structure
and attribute information. More importantly, all the existing
de-anonymizability analysis for graph data are structure-
based. Fundamentally understanding the impacts of user-
associated attributes on the anonymity of graph data is still
an open problem. In this paper, to address this open prob-
lem, we first theoretically analyze the impacts of attributes
on graph data’s anonymity. Subsequently, we present a
new de-anonymization framework, namely De-SAG, to de-
anonymize SAG data leveraging both the structure and
the attribute information. In summary, our attribute-based
anonymity analysis together with existing structure-based
de-anonymizability quantification provide data owners and
researchers a more complete understanding of the pri-
vacy vulnerability of graph data. Further, the proposed
technique (De-SAG) extends existing structure based de-
anonymization attacks and improves the de-anonymization
performance (as shown in the experiments).

3 DATA MODEL, PRELIMINARIES, AND DEFINI-
TIONS

To make the paper more readable, we summarize the nota-
tions in Table 1.

TABLE 1
Notations.

Notation Description
G, G′, and G′′ original, anonymized, and auxiliary graphs
V , V ′, and V ′′ user (node) set
E, E′, and E′′ user to user link set
A, A′, and A′′ attribute set

W , W ′, and W ′′ user to attribute link set
lij a link between users i and j
aij a link between user i and attribute j
Ai the set of attributes associated with user i
n,N the number of users, attributes
m,M the number of user-user links, user-attribute links
(i, j) user i is mapped (de-anonymized) to user j
π a mapping from V ′ to V ′′

pπij the probability that i is mapped to j under π
Pπ

i the mapping distribution of i under π
Hπ(i) the entropy of i under π
Hπ(G′) the entropy of G′ under π
A(G′) the anonymity of G′ under π

p the existing probability of link aij
Dij the attribute difference of users i and j
µX the mean value of binomial random variable X
q′ the probability that aij /∈ W and aij ∈ W ′

q′′ the probability that aij /∈ W and aij ∈ W ′′

κ the density of user-attribute links

3.1 Data Model

Given a SAG, we model it as a graph G = (V,E,A,W ) as
shown in Fig.1, where V = {i|i is a user} (the set of users),
E = {lij |lij is a link between users i and j} (the set of
all the links among users), A = {i|i is an attribute} (the
set of all the non-PII associated with the users in V ), and
W = {aij |i ∈ V, j ∈ A, aij is a link between user i and
attribute j, i.e., user i has attribute j} (the set of all the
links between users and attributes). ∀i ∈ V , we denote the
attributes associated with i byAi, i.e.,Ai = {j|j ∈ A,∃aij ∈
W}. Furthermore, we define n = |V | and N = |A| to be the
numbers of users and attributes, respectively.

3.2 De-anonymization

Given a raw SAG G, we assume that it will be anonymized
before being shared/published. The anonymized G is de-
noted by G′ = (V ′, E′, A′,W ′) (we use an apostrophe to
distinguish between the notations associated with G′ from
G when necessary). Note that, in G′, although we cannot
distinguish between the users in V ′ (we do not know the
identities of the users in V ′), we still know the attributes as-
sociated with each anonymized user since they are non-PII,
e.g., in the published SAG data [19][20][21], the attributes
(non-PII) associated with anonymized users are explicitly
available. On the other hand, in reality, ∀i ∈ V , it is also
possible that Ai ̸= A′

i after the anonymization process, i.e.,
the anonymization scheme may add some new attributes to
and/or remove some existing attributes from a user.

For the adversaries, as in existing de-anonymization
attacks [2][3][4][6], they try to de-anonymize G′ leveraging
some auxiliary graph denoted by G′′ = (V ′′, E′′, A′′,W ′′)
(we use double-apostrophe to distinguish between the no-
tations associated with G′′ from G′ and G when neces-
sary), e.g., an adversary can leverage a Flickr graph to
deanonymize a Twitter graph [2]. In reality, the auxiliary
graphs can be obtained through multiple means, e.g., online
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crawling, data aggregation, data mining tasks, third-party
information collection, public data sharing [2][4].

Without loss of generality, we assume V ′ = V ′′ = V
(although we do not know the users in V ′) and A′ = A′′ =
A. Note that, as in [4][14], this assumption does not limit
the results of this paper. When V ′ ̸= V ′′ (respectively, A′ ̸=
A′′), the analysis in this paper is valid on V ′

new and V ′′
new

(respectively, A′
new and A′′

new) which are defined as V ′
new =

V ′′
new = V ′∪V ′′ (respectively, A′

new = A′′
new = A′∪A′′); and

the algorithm proposed in this paper can still work directly.
According to G′ and G′′, a de-anonymization at-

tack/scheme can mathematically be defined as a mapping
from V ′ to V ′′ [2][4][6][17], denoted by

π = V ′ → V ′′ = {(i, π(i) = j)|i ∈ V ′, j ∈ V ′′}. (1)

Then, for convenience of discussion, ∀i ∈ V ′, a correc-
t de-anonymization of i is denoted by mapping (i, i),
i.e., the identical mapping corresponds to the correct de-
anonymization.

3.3 Anonymity of G′

Entropy has been widely used to quantify the randomness
(uncertainty) of a process/system. Similarly, it can also
be employed to measure the anonymity of G′ given G′′

and π [6]. Let π be an arbitrary de-anonymization scheme
(mapping) from V ′ to V ′′. ∀i ∈ V ′ and ∀j ∈ V ′′, let pπij
be the probability of the event that i is mapped to j under
π. Then, ∀i ∈ V ′, we denote its mapping distribution under
π as Pπ

i =< pπi1, p
π
i2, · · · , pπin >. Hence, the uncertainty of

i under π can be measured by the entropy carried by the
mapping distribution Pπ

i , which is formally defined as

Hπ(i) = −
n∑

j=1

pπij log p
π
ij . (2)

Then, we define the entropy/uncertainty of G′ under π as

Hπ(G′) =
1

n

n∑
i=1

Hπ(i), (3)

which is the average entropy of all the users in G′.
Let Hmax(i) = max{Hπ(i)} and Hmax(G

′) =
max{Hπ(G′)}, respectively. Evidently, for each i ∈ V ′,
Hπ(i) is maximized when i can be mapped to each user in
V ′′ equiprobably, i.e., i is perfectly anonymized. Hence, we
have Hmax(i) = log n. Similarly, we have Hmax(G

′) = log n
when every user in G′ achieves its maximum entropy, i.e.,
G′ is perfectly anonymized. Then, based on Hπ(G′) and
Hmax(G

′), we define the anonymity of G′ under π as

A(G′) =
Hπ(G′)

Hmax(G′)
. (4)

From the definition, we have A(G′) ∈ [0, 1], where a large
value of A(G′) implies a better anonymity of G′. Specifically,
A(G′) = 0 implies all the users in G′ can be successfully
de-anonymized under π while A(G′) = 1 implies that G′

achieves the perfect anonymity.

4 ANONYMITY ANALYSIS: FROM THE ATTRIBUTE
PERSPECTIVE

As we discussed in Sections 1 and 2, the structure-based de-
anonymizability analysis for graph data has been studied in
[4][14][15][16][17]. However, understanding the impacts of
attributes on the anonymity/de-anonymizability of graph
data is still an open problem. Furthermore, no existing de-
anonymization scheme employs both the graph structure
and the associated attributes to de-anonymize graph data. In
this section, we address the first open problem by measuring
the impacts of attributes on SAG data’s anonymity. To be
mathematically tractable, we conduct the analysis under a
preliminary model first. Then, we generalize the analysis to
the more complicated practical scenarios.

4.1 Preliminary Analysis

First, we conduct attribute-based anonymity analysis for SAGs
under a random Attribute Attachment (A2) model: given a
SAG G, we assume that ∀i ∈ V and ∀j ∈ A, the existing
probability of link aij is p, i.e., Pr(aij ∈ W |∀i ∈ V, ∀j ∈ A) =
p. Furthermore, we assume W ′ and W ′′ are random subsets
of W : for each user-attribute link in W , it appeares in W ′

and W ′′ with positive probabilities p′ and p′′, respectively,
i.e., Pr(aij ∈ W ′|aij ∈ W ) = p′ and Pr(aij ∈ W ′′|aij ∈
W ) = p′′.

To facilitate our analysis, we introduce the concept of
Attribute Difference (AD) between the users in V ′ and V ′′.
∀i ∈ V ′ and ∀j ∈ V ′′, their AD is defined as

Dij = (A′
i ∪ A′′

j ) \ (A′
i ∩ A′′

j ). (5)

In addition, before conducting the analysis, we give a lemma
which will be used.

Lemma 1. [14] Let X and Y be two binomial random variables
with means µX and µY , respectively. Then, if µX > µY ,
Pr(X ≤ Y ) ≤ 2 exp(− (µX−µY )2

8(µX+µY ) ).

Let α = pp′(1−p′′)+pp′′(1−p′) and β = pp′(1−pp′′)+

pp′′(1 − pp′). Furthermore, let ϑ = (β−α)2

8(β+α) . Then, we have
the following theorem which quantifies the attribute-based
anonymity loss of G′.

Theorem 1. Let t be a natural number and t ∈ [1, n− 1]. Then,
(i) if ϑ ≥ 2 lnn+t ln(n−1)−ln t!+1

Nt , A(G′) = log t
logn ; and (ii) if

ϑ ≥ 3 lnn+t ln(n−1)−ln t!+1
Nt , A(G′) = 0, i.e., G′ lost all of the

anonymity.

Proof Sketch: (i) To prove this conclusion, we first analyze
the entropy of ∀i ∈ V ′. Suppose i is de-anonymized to
j ∈ V ′′ under some de-anonymization scheme π (we will
discuss how to determine π later), i.e., π(i) = j. Then, we
analyzed the AD caused by mapping (i, j). On one hand, if
j = i, an AD will be induced if i has one attribute in exactly
one of V ′ and V ′′. It follows that the AD corresponding to
mapping (i, j = i) is Dij = Dii ∼ B(N,α), where B(N,α)
is a binomial variable with parameters N and α. On the other
hand, if j ̸= i, the AD corresponding to mapping (i, j) is
Dij ∼ B(N, β). Clearly, β > α.

Let E be the event that ∃j ≠ i such that Dii ≥
Dij . Then, according to Lemma 1, we have Pr(E) ≤
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2 exp(− (Nβ−Nα)2

8(Nβ+Nα) ) = 2 exp(−Nϑ). Furthermore, the pos-
sible number of such events can be counted by t. Let
Et be the event that E happens t times. Then, we have
Pr(Et) = C(n − 1, t) · Pr(E)t · (1 − Pr(E))n−t ≤ C(n −
1, t) · Pr(E)t ≤ (n−1)t

t! · 2 exp(−Nϑt) = exp(t ln(n − 1) −
ln t!) · 2 exp(−Nϑt) = 2 exp(t ln(n − 1) − ln t! − Nϑt) ≤
2 exp(−2 lnn − 1) ≤ 1

n2 . According to the Borel-Cantelli
Lemma, we have Pr(Et) → 0 as n → ∞. Therefore, when
ϑ ≥ 2 lnn+t ln(n−1)−ln t!+1

Nt , with probability 1, E happens less
than t times.

Algorithm 1: An implementation of π

1 for i ∈ V ′ do
2 sorting the users in V ′′ in the increasing order of

Dij for j ∈ V ′′ and the sorted sequence is denoted
as < j1, j2, · · · , jn >;

3 mapping i to jk (1 ≤ k ≤ t) with probability 1
t ;

Based on the analysis, we define a simple
de-aonymization scheme π as shown in Algo-
rithm 1. From Algorithm 1, we have Pπ

i =<
pπj1 , p

π
j2
, · · · , pπjt , p

π
jt+1

, · · · , pπjn > =< 1
t ,

1
t , · · · ,

1
t ,

0, · · · , 0 >. Furthermore, considering that Pr(Et) → 0,
we conclude that π can successfully de-anonymize any
user in V ′ with probability 1

t . Then, ∀i ∈ V ′, we have
Hπ(i) = log t. It follows that Hπ(G′) = log t and thus
A(G′) = Hπ(G′)

Hmax(G′) =
log t
logn .

(ii) Now, we prove the second conclusion. Let Eall

be the event that there exists some t such that Et happen-

s. Then, Pr(Eall) =
n∪

t=1
Pr(Et). Based on the Boole’s in-

equality, we have Pr(Eall) =
n∪

t=1
Pr(Et) ≤

n−1∑
t=1

Pr(Et) ≤
n−1∑
t=1

2 exp(t ln(n − 1) − ln t! − Nϑt) =
n−1∑
t=1

2 exp(−3 lnn −

1) ≤ 1
n2 . According to the Borel-Cantelli Lemma, we

have Pr(Eall) → 0 as n → ∞, i.e., when ϑ ≥
3 lnn+t ln(n−1)−ln t!+1

Nt , @t such that Et happens. This further
implies that with probability 1, ∀i ∈ V ′ and ∀j ∈ V ′′, if
j ̸= i, Pr(Dii < Dij)→ 1 as n→∞.

Algorithm 2: Another implementation of π

1 for i ∈ V ′ do
2 mapping i to j ∈ V ′′ such that

j = argmin
j
{Dij |j ∈ V ′′};

Based on our analysis, we give another simple imple-
mentation of π as shown in Algorithm 2. Under π, each
user in V ′ can be successfully de-anonymized with prob-
ability 1 as n → ∞. Therefore, Hπ(i) = 0 ∀i ∈ V ′. It
follows A(G′) = 0, i.e., all the users can be successfully
de-anonymized by π with probability 1. 2

In Theorem 1, we analyzed the impacts of attributes
(non-PII) on the anonymity/de-anonymizability of SAG da-
ta under the A2 model. Based on our analysis, the attributes
may also significantly reduce the anonymity of SAG data,
which is similar to the graph structure (as shown in [4][14]-

[17]). To make our analysis more practical, we extend it to
general scenarios in the following subsection.

4.2 Extension: Practical Scenarios

In the analysis under the A2 model, W ′ and W ′′ are two
random subsets of W , which implies that ∀i ∈ V ,A′

i andA′′
i

are two random subsets of Ai. However, in reality, it is pos-
sible that some attributes inAi may not appear inA′

i/A′′
i or

some attributes in A \ Ai may appear in A′
i/A′′

i . Therefore,
in this subsection, we conduct the attribute-based anonymity
analysis for SAG data under a more general model.

Under the general model, ∀aij ∈ W , aij appears in
W ′ and W ′′ with probabilities p′ and p′′ respectively, i.e.,
Pr(aij ∈ W ′|aij ∈ W ) = p′ and Pr(aij ∈ W ′′|aij ∈
W ) = p′′. Furthermore, ∀aij /∈ W , it is appeared in W ′

and W ′′ with probabilities q′ and q′′ respectively, Pr(aij ∈
W ′|aij /∈ W ) = q′ and Pr(aij ∈ W ′′|aij /∈ W ) = q′′. Let
WU = {aij |i ∈ V, j ∈ A} be the universal set of all the possi-
ble user-attribute links. Then, ∀aij ∈WU , we have Pr(aij ∈
W |aij ∈ WU ) →

statistically

|W |
|WU | . Let κ = |W |

|WU | and define

ζ = κ(p′(1−p′′)+p′′(1−p′))+(1−κ)(q′(1−q′′)+q′′(1−q′)),
δ = (κp′+(1−κ)q′)(κ(1−p′′)+(1−κ)(1−q′′))+(κ(1−p′)+
(1 − κ)(1 − q′))(κp′′ + (1 − κ)q′′), and ϖ = (δ−ζ)2

8(δ+ζ) . Then,
we have the following theorem to quantify the impacts of
attributes on the achievable anonymity of G′.

Theorem 2. Let t be a natural number and t ∈ [1, n− 1]. Then,
(i) if δ > ζ and ϖ ≥ 2 lnn+t ln(n−1)−ln t!+1

Nt , A(G′) = log t
logn ;

and (ii) if δ > ζ and ϖ ≥ 3 lnn+t ln(n−1)−ln t!+1
Nt , A(G′) = 0.

Proof: This theorem can be proven using similar tech-
niques as in Theorem 1. 2

In Theorem 2, we show the achievable anonymity of
G′ under a general statistical model. From Theorem 2, the
condition on ϖ is similar to that of ϑ in Theorem 1. In
addition, Theorem 2 has one more constraint δ > ζ , which
actually comes from the fact that for i ∈ V , the attributes
that do not appeare in Ai may appear in A′

i and/or A′′
i . Similar

to Theorem 1, Theorem 2 also implies that the attributes
associated with users (non-PII) may have significant impacts
on the anonymity of SAG data.

4.3 Evaluation

In this subsection, we evaluate our attribute-based anonymity
analysis both numerically and via experiments that leverage
real world SAG datasets. Since there exists randomness in
our evaluations, we repeat each group of evaluations 100
times. The results are the average of these 100 evaluations.

4.3.1 Numerical Evaluation
Since the analysis under the A2 model can be viewed as a
special case of that under the general model, our numer-
ical evaluation follows the anonymity analysis under the
general model, i.e., Theorem 2. Furthermore, to simplify
the evaluation process, we set p′ = p′′ and q′ = q′′. Note
that this setting does not limit our evaluation, and it can be
removed directly by considering more scenarios.

In our evaluation, we first randomly generate a SAG G
with the specified n, N , and κ. Subsequently, we generate
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Fig. 2. Numerical evaluation of A(G′).

G′ and G′′ from G according to p′, p′′, q′, and q′′. Finally, we
evaluate A(G′) based on Theorem 2. The detailed parameter
settings are specified in each group of evaluations.

We show the evaluation results in Fig.2. We analyze the
results as follows.

(1) From Fig.2 (a), with the increase of κ, A(G′) decreases
under different p′. This is because a larger κ implies more at-
tribute information is associated with each user, statistically.
Therefore, different users are more distinguishable with re-
spect to attributes, i.e., with a higher probability Dii ≤ Dij .
Furthermore, given κ, better anonymity is achieved when
p′ is smaller, e.g., given κ = 0.02, A(G′) = 0.361 when
p′ = 0.7 while A(G′) = 0.038 when p′ = 0.95. This is
because a larger p′ implies more attributes can be preserved
in G′ and G′′ (since p′′ = p′), and thus it is more likely
that Dii < Dij , i.e., a large p′ implies more anonymity loss,
which is consistent with our theoretical analysis.

(2) From Fig.2 (b), given n, p′, p′′, q′, and q′′, A(G′)
decreases when κ increases under different N . The reason
is the same as in Fig.2 (a): a larger κ implies a higher
probability of Dii < Dij , i.e., more anonymity loss. In
addition, given κ, a larger N also implies more anonymity
loss. For instance, given κ = 0.065, A(G′) = 0.932 when
N = 103 while A(G′) = 0.113 when N = 104. This is
because when κ is fixed, a larger N also implies richer
attributes associated with each user and thus Dii < Dij

happens with a higher probability, i.e., A(G′) decreases.
(3) Fig.2 (c) shows the impacts of q′ (q′′) on A(G′).

From Fig.2 (c), when q′ increases, A(G′) increases under
different p′. This is because q′ indicates the percentage of
fake user-attribute relationships being added to G′ and G′′

(q′′ = q′). A larger q′ implies more link noise has been
added to W ′ and W ′′ and thus a lower probability of
Dii < Dij has been induced, followed by the increase of
A(G′). Furthermore, given q′, a smaller p′ implies more
anonymity can be achieved. The reason is the same as
analyzed before: a smaller p′ implies less common attributes
are shared between G′ and G′′. Hence, better anonymity can
be achieved by G′.

(4) In Fig.2 (d), we examine the impacts of q′ and N on
A(G′). Again, when q′ increases, A(G′) also increases under
different N . Additionally, given q′, a larger N implies more
anonymity loss. The reason is also the same as before. A
larger N implies more attribute information is available for
each user followed by less achievable anonymity according
to our theoretical analysis.

4.3.2 Real World Data-based Evaluation

Now, we evaluate our attribute-based anonymity analysis
leveraging real world SAG datasets.

Datasets. The employed SAG datasets include five
Google Plus (GP) datasets, denoted by GPk (1 ≤ k ≤ 5)
respectively [19][20][21], one Facebook dataset [21], and one
Twitter dataset [21] as shown in Table 2, where n = |V |
(the number of users), m = |E| (the number of user-user
links), N = |A| (the number of attributes), M = |W |
(the number of user-attribute links), and κ = M

n·N (the
connectivity between users and attributes). All the SAG
datasets include both the graph structure information and
the attribute information (non-PII) associated with users. We
introduce the datasets as follows.

GP is a social networking service launched in June
2011. It is designed to be a place to connect with friends
and family. GP1, GP2, GP3, and GP4 are four GP datasets
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TABLE 2
Data statistics.

n m N M κ
GP1 4,693,129 47,130,325 991,545 3,644,103 7.83E-07
GP2 17,091,929 271,915,755 3,108,141 14,693,125 2.77E-07
GP3 26,244,659 410,445,770 4,147,389 19,344,382 1.78E-07
GP4 28,942,911 462,994,069 4,443,631 20,592,962 1.60E-07
GP5 107,614 13,673,453 19,044 387,261 1.89E-04

Facebook 4,039 88,234 1,283 37,257 7.19E-03
Twitter 81,306 1,768,149 216,839 1,245,234 7.06E-05
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Fig. 3. Evaluation of A(G′) leveraging on real data.

crawled in July 2011, August 2011, September 2011, and
October 2011, respectively [19][20]. In addition to the social
relationship information, there is also attribute information
in the four GP datasets, e.g., gender, affiliation information,
education, city. They are available under application. GP5 is
another GP dataset which is publicly available at [21]. The
attribute information in GP5 includes education, hometown,
language, etc.

Facebook is one of the most popular social networking
services in the world. It is designed as a social utility that
connects people with friends and others who work, study,
and live around them. The employed Facebook dataset
is publicly available at [21]. The attribute information in
Facebook includes birthday, education, location, employer,
etc.

Twitter is also a popular online social networking service
that enables users to send and read short messages named
tweets. The employed Twitter dataset is publicly available
at [21]. The attribute information in the Twitter dataset
includes interests, cities, sports, websites, etc.

Results and Analysis. When conducting real world
SAG data based evaluation, we first generate G′ and G′′

from each dataset according to the specified p′, p′′, q′, and
q′′. Then, we evaluate the anonymity of G′ following our

analysis in Theorem 2. The evaluation results are shown in
Fig.3, where the parameters are specified in each group of
simulations. We analyze Fig.3 as follows:

(1) In Fig.3 (a) and (b), we show the impacts of p′ on
the achievable anonymity of each dataset, from which we
can see that with the increase of p′, the anonymity of each
dataset decreases. For instance, when p′ is increased from
0.6 to 0.8, A(Facebook) is decreased from 0.826 to 0.381.
The reason is similar to that in the numerical evaluation.
A larger p′ implies more attribute information is preserved
in G′ and G′′. This further implies that the probability
of Dii < Dij increases, followed by the decrease of the
anonymity. From Fig.3 (a) and (b), we can also see that
the anonymity of GP1, GP2, GP3, and GP4 are higher than
that of GP5, Facebook, and Twitter, e.g., when p′ = 0.85,
A(GP1) = 0.964 while A(Twitter) = 0.145. The main reason
is that the connectivity of GPk (1 ≤ k ≤ 4) is much
smaller than that of GP5, Facebook, and Twitter. Therefore,
GPk (1 ≤ k ≤ 4) can achieve better anonymity, which is
consistent with our analysis.

(2) Fig.3 (c) and (d) show the impacts of q′, which is
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Fig. 4. User-based de-anonymization and set-based de-anonymization.

defined as q′ = k · qe = k · (1−p′)M
|nN−M | (1 ≤ k ≤ 40) 1, on the

anonymity of the seven datasets. From Fig.3 (c) and (d), the
anonymity of each dataset increases with the increase of q′,
e.g., when q′ is increased from 5qe to 35qe, the anonymity
of Facebook is increased from 0.482 to 0.785. The reason is
that when q′ increases, more fake user-attribute links (noise
links) will be added to G′ and G′′. Then, the probability
of Dii < Dij is decreased, followed by the increase of the
anonymity, which is consistent with our analysis.

4.4 Discussion
From our summarization in Section 2, structure-based de-
anonymizability analysis for graph data has been conducted
in [4][14][16][15][17]. In this paper, for the first time, we
study the impacts of attributes (non-PII) on the anonymity
of graph data both theoretically and experimentally. Based
on our analysis and evaluation results, we find that the at-
tribute information associated with users may significantly
reduce graph data anonymity. Therefore, our study together
with existing structure-based de-anonymiability quantifica-
tion research provides a much more complete understand-
ing on the anonymity of graph data.

5 DE-ANONYMIZATION

In this section, we present a new de-anonymization frame-
work, namely De-SAG, which considers both the graph
structure and the attributes associated with users. Since
graph structure-based de-anonymization has been well studied
(as summarized in Section 2), we design De-SAG on top of
existing structure-based de-anonymization attacks. There-
fore, De-SAG can be considered as an enhanced version of
existing de-anonymization attacks. To facilitate our design,
we define a new notation V ′′

i,t for i ∈ V ′, which denotes
the t-most similar users of i in V ′′ with respect to attributes.
Evidently, V ′′

i,t can be obtained using the same technique
as in Algorithm 1 (i.e., let V ′′

i,t = {jk|k = 1, 2, · · · , t}). Let
Dmax = max{Dij |i ∈ V ′, j ∈ V ′′} be the maximum AD
between any user in V ′ and any user in V ′′. Then, we define
the attribute similarity of i ∈ V ′ and j ∈ V ′′ as 1− Dij

Dmax
.

5.1 De-SAG
With respect to the de-anonymization process, existing
structure-based de-anonymization attacks can be classified
as user-based de-anonymization schemes, e.g., [2][6][15][16],

1. Here, we set q′ in terms of p′. This is because we do not want to
add too many fake user-attribute links in G′ and G′′ compared to the
number of removed real user-attribute links. Otherwise, the data utility
of G′ for data mining tasks might be ruined.

and set-based de-anonymization schemes, e.g., [3][4][7] (the
detailed explanations are given later). Since De-SAG is
proposed on top of existing de-anonymization attacks, we
present two implementations of the De-SAG framework
based on the two classes of de-anonymization schemes.

5.1.1 User-based De-SAG
In user-based de-anonymization schemes [2][6][15][16], as
shown in Fig.4 (a), during each de-anonymization itera-
tion, one anonymized user i in V ′ is selected based on
some criteria (e.g., having the maximum degree, having
the most number neighbors being de-anonymized, having
the most number of seed neighbors). Then, i is mapped
(de-anonymized) to some user in V ′′ according to the
proposed de-anonymization technique and the next de-
anonymization iteration is started.

Algorithm 3: User-based De-SAG

1 while V ′ ̸= ∅ do
2 select i from V ′ as the user for de-anonymization

according to the criteria in [2][6][15][16];
3 map i to some user j in V ′′

i,t according to the
enhanced structure-based de-anonymization
technique in [2][6][15][16], i.e., taking the attribute
similarity as an extra mapping feature;

4 V ′ = V ′ \ {i};
5 V ′′ = V ′′ \ {j};

To enhance existing user-based de-anonymization at-
tacks, we present an implementation of the user-based
version of De-SAG as shown in Algorithm 3. From Al-
gorithm 3, De-SAG basically follows the same process of
existing user-based de-anonymization attacks. The primary
improvements are (i) when de-anonymizing i ∈ V ′, instead
of considering all the users in V ′′ as candidates, we select
the t-most-similar users of i with respect to attributes from
V ′′ as candidate mappings. Here, t is a pre-defined parame-
ter which controls the trade-off between de-anonymization
accuracy and efficiency (a theoretically optimal t can be
approximately estimated based on our anonymity analysis
in Section 42); and (ii) i is de-anonymized to one of the
t-most similar users according to an enhanced version of ex-
isting structure-based de-anonymization attacks. In existing
attacks, i is mapped to some user j in V ′′ according to
the similarity of i and j’s structural features, e.g., degree,
betweenness centrality, closeness centrality [2][6][15][16]. In
the enhanced version of existing attacks, De-SAG takes the
attribute similarity as an extra mapping feature.

Let O(T ) and O(S) be the time and space complexities of
the enhanced user-based de-anonymization scheme in Algo-
rithm 3, respectively. Then, the time complexity of De-SAG

2. To estimate the theoretically optimal t, we first specify a temporary
mapping from V ′ to V ′′. For instance, we can simply mapping V ′ to
V ′′ according to the users’ degree sequence: sorting the users in V ′

and V ′′ according to the degree non-increasing order and denoting the
obtained user sequences as < i1, i2, · · · , in > and < j1, j2, · · · , jn >,
respectively; and mapping ik to jk for 1 ≤ k ≤ n. Second, we estimate
G as G = (V = V ′ = V ′′, E = E′ ∪E′′, A,W = W ′ ∪W ′′). Third, we
estimate p, p′, and p′′ based on G, G′, and G′′. Fourth, we can estimate
ϑ in terms of p, p′, and p′′. Finally, we estimate t as t = argmin

t
ϑ ≥

2 lnn+t ln(n−1)−ln t!+1
Nt

.
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in Algorithm 3 is upper bounded by O(n2 log n + T ) since
the candidate set size is reduced (the O(n2 log n) time com-
plexity is used to compute V ′′

i,t). The actual time complexity
of De-SAG depends on the particular enhanced structure-
based de-anonymization attack. The space complexity of
De-SAG is also O(S), i.e., De-SAG does not increase the
space complexity of the enhanced scheme.

5.1.2 Set-based De-SAG
In set-based de-anonymization schemes [3][4][7], as shown
in Fig.4 (b), during each de-anonymization iteration, a
subset of un-de-anonymized users Ṽ ′ is selected from V ′

and a subset of auxiliary users Ṽ ′′ is selected from V ′′,
respectively. Subsequently, a complete weighted bipartite graph
G̃ = (Ṽ , Ẽ) with Ṽ = Ṽ ′∪Ṽ ′′ and Ẽ = {lij |i ∈ Ṽ ′, j ∈ Ṽ ′′}
is constructed, where the weight of each link lij , denoted
by w(lij), is determined according to the proposed de-
anonymization techniques (usually, the weight of link lij
measures how structurally similar i and j are and a larger
weight means they are more structurally similar) [3][4][7].
After constructing G̃, the de-anonymization problem re-
duces to a Maximum Weighted Bipartite graph Matching prob-
lem (MWBM) on G̃. Finally, by addressing the MWBM
problem on G̃ (e.g., using the Hungarian algorithm), a
mapping from Ṽ ′ to Ṽ ′′ can be determined and the next
de-anonymization iteration is started.

Algorithm 4: Set-based De-SAG

1 while V ′ ̸= ∅ do
2 determine Ṽ ′ ⊆ V ′ according to the criteria in

[3][4][7];
3 determine Ṽ ′′ ⊆ V ′′ according to the criteria in

[3][4][7];
4 for i ∈ Ṽ ′ do
5 Ṽ ′′

i,t ← V ′′
i,t ∩ Ṽ ′′;

6 construct a bipartite graph G̃ = (Ṽ ′ ∪ Ṽ ′′, Ẽ),
where Ẽ = {lij |i ∈ Ṽ ′, j ∈ Ṽ ′′

i,t};
7 for lij ∈ Ẽ do
8 determine w(lij) according to the technique in

[3][4][7];
9 wa ← 1− Dij

Dmax
;

10 w(lij)← c · w(lij) + (1− c) · wa;

11 de-anonymize Ṽ ′ based on G̃ using the technique
in [3][4][7];

12 subtract the de-anonymized users from V ′ and
V ′′, respectively;

To enhance the set-based de-anonymization schemes
[3][4][7], we present a set-based implementation of De-SAG
as shown in Algorithm 4, where wa denotes the attribute sim-
ilarity of i ∈ V ′ and j ∈ Ṽ ′′

i,t, and c ∈ [0, 1] is a pre-defined
constant value. From Algorithm 4, De-SAG basically follows
a similar process as existing set-based de-anonymization at-
tacks. During each de-anonymization iteration, it improves
existing schemes by further leveraging the attribute infor-
mation. Specifically, De-SAG enhances existing set-based
de-anonymization attacks in two perspectives. First, instead

of constructing a complete bipartite graph, it reduces the
number of links in G̃ by setting Ẽ = {lij |i ∈ Ṽ ′, j ∈ Ṽ ′′

i,t}.
Second, it resets the weight associated with each link by
taking account of the attribute similarity of two users (using
w(lij) ← c · w(lij) + (1 − c) · wa). Leveraging the two
enhancements, (i) the computational complexity of existing
set-based de-anonymization schemes can be reduced (since
the mapping problem now is addressed on a non-complete
bipartite graph); and (ii) the performance of existing set-
based de-anonymization attacks can be improved (since the
attribute similarity is used to enhance the de-anonymization
process).

Let O(T ) and O(S) be the time and space complex-
ities of the enhanced set-based de-anonymization scheme
in Algorithm 4, respectively. Then, similar to Algorithm 3,
the time complexity of De-SAG in Algorithm 4 is upper
bounded by O(n2 log n + T ) and the space complexity of
De-SAG is also O(S). Again, the actual time complexity
of De-SAG depends on the particular enhanced structure-
based de-anonymization attack.

5.2 Evaluation

In this subsection, we evaluate the performance of De-
SAG and compare it with state-of-the-art de-anonymization
attacks.

5.2.1 Evaluation Setting

Since De-SAG has two implementations depending on
the enhanced structure-based de-anonymization attack-
s, we compare De-SAG with the latest user-based de-
anonymization scheme proposed in [16], denoted by VLD-
B14, and the latest set-based de-anonymization scheme pro-
posed in [4], denoted by CCS14.

To conduct the evaluation, we employ three SAG
datasets from Table 2: GP5, Facebook, and Twitter that
are widely used in existing research [4][14][15][17][31], and
follow the following methodology. First, given a raw dataset
G = (V,E,A,W ) (i.e., GP5, Facebook, and Twitter here),
we obtain the anonymized graph G′ = (V ′, E′, A′,W ′)
and the auxiliary graph G′′ = (V ′′, E′′, A′′,W ′′) accord-
ing to the parameter setting of each group of evaluations.
When constructing (V ′, E′) and (V ′′, E′′) from G, i.e., the
anonymized and auxiliary graphs, we employ the same
technique as in [4][16] for fairness and accuracy. Specifically,
we let V ′ = V ′′ = V and E′ and E′′ are random subsets of
E with each link in E appearing in E′/E′′ with probability
s, i.e., Pr(lij ∈ E′|lij ∈ E) = Pr(lij ∈ E′′|lij ∈ E) = s.
For A′ and A′′, we assume A′ = A′′ = A according to
our model. We also determine W ′ and W ′′ according to our
data model. Specifically, similar to the evaluation setting
of our theoretical anonymity analysis, we set Pr(aij ∈
W ′|aij ∈ W ) = p′ = Pr(aij ∈ W ′′|aij ∈ W ) = p′′ and
Pr(aij ∈ W ′|aij /∈ W ) = q′ = Pr(aij ∈ W ′′|aij /∈ W ) = q′′.
Second, we employ VLDB14, CCS14, and De-SAG to de-
anonymize G′ leveraging G′′, respectively. The successful
de-anonymization rate of each de-anonymization algorithm is
defined as χ(·) = nc

n , where nc is the number of users that
have been successfully de-anonymized and n = |V | is the
total number of users in an anonynized dataset.
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(c) De-anonymize Twitter (when p′ = 0.8
and s = 0.8, χ(De-SAG) = 0.83 and
χ(VLDB14) = 0.29)
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Fig. 5. De-SAG Evaluation (vs p′). Default setting: q′ = q′′ = 0 and c = 0.5.
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Fig. 6. De-SAG evaluation (vs q′). Default setting: p′ = p′′ = 0.8 and c = 0.5.
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As summarized in Section 2, VLDB14 is a seed-based
attack and CCS14 is a seed-free attack. Therefore, in our
evaluation, we feed VLDB14 50 seed mappings, which are
the top-50 users in G with respect to node degree. For other
parameters, we specify them in each group of evaluations.

5.2.2 Results
In Fig.5, we show the impacts of p′ on the performance of
VLDB14, CCS14, and De-SAG when de-anonymizing GP5,
Facebook, and Twitter. Specifically, we show the change of
χ(De-SAG)
χ(VLDB14) with respect to the increase of p′ in Fig.5 (a)-(c)

and the change of χ(De-SAG)
χ(CCS14) with respect to the increase of

p′ in Fig.5 (d)-(f), respectively. We analyze Fig.5 as follows.
(1) When p′ increases, both χ(De-SAG)

χ(VLDB14) and χ(De-SAG)
χ(CCS14) in-

crease under different s. This is because when p′ increases,
more attribute information appears in both the anonymized
graph and the auxiliary graph, i.e., the users in G′ and G′′

have more common attributes (which implies that the users
in G′ and G′′ have better attribute similarity in Algorithms
3 and 4). Then, χ(De-SAG) increases since more attribute
information is available for de-anonymization, followed by
the increase of χ(De-SAG)

χ(VLDB14) and χ(De-SAG)
χ(CCS14) . Note that this result

is also consistent with our theoretical analysis and experi-
mental evaluation in Section 4: the increase of p′ implies the
decrease of the anonymity of G′.

(2) When de-anonymizing GP5, Facebook, and Twit-
ter, on average, the successful de-anonymization rate of
De-SAG is 1.63, 4.63, and 2.75 times of that of VLDB14
respectively, and is 1.94, 7.79, and 1.53 times of that of
CCS14 respectively. This demonstrates that the attribute in-
formation is very powerful in enhancing existing structure-
based de-anonymization attacks, which further confirms
our attribute-based anonymity analysis (the attribute infor-
mation can significantly reduce the anonymity SAG data).

(3) In most of the scenarios, De-SAG leads to more im-
provements compared to VLDB14 and CCS14 for smaller s
than larger s. For instance, when de-anonymizing Facebook
employing De-SAG and VLDB14 (Fig.5 (b)), on average,
χ(De-SAG)
χ(VLDB14) = 5.42 when s = 0.7, χ(De-SAG)

χ(VLDB14) = 4.65 when

s = 0.8, and χ(De-SAG)
χ(VLDB14) = 3.82 when s = 0.9; and when

de-anonymizing Twitter employing De-SAG and CCS14
(Fig.5 (f)), on average, χ(De-SAG)

χ(CCS14) = 1.64 when s = 0.7,
χ(De-SAG)
χ(CCS14) = 1.54 when s = 0.8, and χ(De-SAG)

χ(CCS14) = 1.41 when
s = 0.9. This is because a small s implies that less links
in E appeare in E′ and E′′, followed by less structural
similarity between G′ and G′′. Therefore, the structure-
based de-anonymization attacks VLDB14 and CCS14 will
have a performance degradation. On the other hand, the
attributes associated with users can provide relatively more
useful information for successful de-anonymization.

Leveraging GP5, Facebook, and Twitter, we show the im-
pacts of q′ on the performance of VLDB14, CCS14, and De-
SAG in Fig.6, where q′ is defined as q′ = k·qe (k = 2, · · · , 10,
and qe = (1−p′)M

|nN−M | which is the same as in Section 4).

Specifically, the impacts of q′ on χ(De-SAG)
χ(VLDB14) are shown in

Fig.6 (a)-(c), and the impacts of q′ on χ(De-SAG)
χ(CCS14) are shown

in Fig.6 (d)-(f), respectively. We analyze the results in Fig.6
as follows.

(1) When q′ increases, both χ(De-SAG)
χ(VLDB14) and χ(De-SAG)

χ(CCS14) de-
crease under different s. For instance, when de-anonymizing
GP5 employing De-SAG and VLDB14 in the case of s = 0.7

(Fig.6 (a)), χ(De-SAG)
χ(VLDB14) is decreased from 1.49 to 1.34 when q′

is increased from 2qe to 10qe; and when de-anonymizaing
GP5 employing De-SAG and CCS14 in the case of s = 0.7

(Fig.6 (d)), χ(De-SAG)
χ(CCS14) is decreased from 2.15 to 2.11 when q′

is increased from 2qe to 10qe. This is because, as indicated
in Section 4, with the increase of q′, more fake user-attribute
links will be added to G′ and G′′, and thus the benefit of
employing the attribute information for de-anonymization
is decreased, followed by the decrease of χ(De-SAG). Then,
both χ(De-SAG)

χ(VLDB14) and χ(De-SAG)
χ(CCS14) decrease. This is consistent with

our analysis and evaluation in Section 4.
(2) As in Fig.5, when de-anonymizing GP5, Facebook,

and Twitter, on average, the successful de-anonymization
rate of De-SAG is 1.33, 6.46, and 2.77 times of that of
VLDB14 respectively, and is 1.99, 9.41, and 1.57 times of
that of CCS14 respectively. This demonstrates that De-
SAG can significantly improve existing structure-based de-
anonymization attacks by taking account both the structure
and the attribute information.

(3) Given q′, similar to that in Fig.5, the improvements
of De-SAG over VLDB14/CCS14 is higher for smaller s in
most of the scenarios. For instance, when de-anonymizing
Facebook (Fig.6 (b) and (e)), on average, χ(De-SAG)

χ(VLDB14) = 7.06

when s = 0.7, χ(De-SAG)
χ(VLDB14) = 6.43 when s = 0.8, and

χ(De-SAG)
χ(VLDB14) = 5.9 when s = 0.9; and χ(De-SAG)

χ(CCS14) = 10.1 when

s = 0.7, χ(De-SAG)
χ(CCS14) = 9.8 when s = 0.8, and χ(De-SAG)

χ(CCS14) = 8.33
when s = 0.9. Again, this is due to the fact that the attributes
associated with users can relatively provide more informa-
tion for de-anonymization when less structural information
is available.

5.3 Discussion
Based on our analysis and the evaluation results, De-
SAG can significantly improve the performance of existing
structure-based de-anonymization attacks by taking account
both structure and attribute information. Therefore, in graph
data sharing/publishing research, it is also important to pro-
tect the user-attribute relationships in addition to protecting
the graph structure. However, to the best of our knowl-
edge, most, if not all, of the existing graph anonymiza-
tion techniques only consider to anonymize graph struc-
ture [22][29][31]. Hence, we plan to conduct SAG data
anonymization research in the future by considering both
the graph structure and the user-attribute relationships.

As shown in [35], even for structure-based de-
anonymization attacks, it is difficult, if not impossible, to
develop some effective anonymization techniques that can
preserve all the data utility. In practice, SAG data can pro-
vide more potential auxiliary information for adversaries,
which make the defense even more difficult. The possible
countermeasures include: from the policy perspective, de-
veloping proper data access and publishing policies that
can increase the difficulty of obtaining useful auxiliary in-
formation; from the technical perspective, one direction is
that instead of trying to develop anonymization techniques
that can preserve as much data utility as possible, we focus
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on designing application-aware anonymizaiton techniques
with the target of preserving the desired data utility [35].
Another potential direction is to develop new privacy pro-
tection models, e.g., the adversarial learning based privacy
protection model. Our attribute-based anonymity analysis
and evaluation are expected to shed light on such research.

6 CONCLUSION AND FUTURE WORK

In this paper, we study the impacts of the attribute infor-
mation (non-PII) on the privacy of SAG data both theoret-
ically and experimentally. First, we conduct an attribute-
based anonymity analysis for SAG data. By careful quan-
tification, we explicitly obtain the correlation between the
graph anonymity and the associated attribute information.
Through numerical and real world data-based evaluation-
s, we validate our analysis and show that the attribute
information may cause significant graph anonymity loss.
Subsequently, according to our attribute-based anonymi-
ty analysis, we propose a novel de-anonymization frame-
work, namely De-SAG, to graph data, which takes ac-
count both graph structure and attribute information. By
extensive evaluation, we demonstrate that De-SAG can
significantly improve the performance of state-of-the-art
de-anonymization attacks. Our attribute-based anonymity
analysis and de-anonymization framework are expected to
fill the gap in understanding the actual privacy vulnerabil-
ity of graph data and further shed light on future graph
anonymization and de-anonymization research.

The future research directions of this paper are as fol-
lows. First, in addition to conducting structure-based and
attribute-based anonymity analysis for graph data sepa-
rately, we plan to analyze the privacy impacts of graph
structure and attribute information simultaneously. Second,
as we discussed in Section 5.3, it is expected to conduct SAG
data anonymization research in the future by considering
both the graph structure and the user-attribute relationships.
Third, we did not consider the correlation that may exist
among attributes. In practice, such correlation might be used
for enhancing the capability of de-anonymizaiton attacks.
Therefore, it is meaningful to extend our theoretical results
and the de-anonymization framework to the scenario that
accounts for such correlation.
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